PARAMETRIC MANIFOLDS II: Intrinsic Approach
نویسندگان
چکیده
A parametric manifold is a manifold on which all tensor fields depend on an additional parameter, such as time, together with a parametric structure, namely a given (parametric) 1-form field. Such a manifold admits natural generalizations of Lie differentiation, exterior differentiation, and covariant differentiation, all based on a nonstandard action of vector fields on functions. There is a new geometric object, called the deficiency, which behaves much like torsion, and which measures whether a parametric manifold can be viewed as a 1-parameter family of orthogonal hypersurfaces. 1 Present address: Division of Mathematics and Computer Science, Alfred University, Alfred, NY 14802
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملPattern Learning and Recognition on Statistical Manifolds: An Information-Geometric Review
We review the information-geometric framework for statistical pattern recognition: First, we explain the role of statistical similarity measures and distances in fundamental statistical pattern recognition problems. We then concisely review the main statistical distances and report a novel versatile family of divergences. Depending on their intrinsic complexity, the statistical patterns are lea...
متن کاملAn Efficient Solution to the Eikonal Equation on Parametric Manifolds
We present an efficient solution to the eikonal equation on parametric manifolds, based on the fast marching approach. This method overcomes the problem of a non-orthogonal coordinate system on the manifold by creating an appropriate numerical stencil. The method is tested numerically and demonstrated by calculating distances on various parametric manifolds. It is further used for two applicati...
متن کاملManifold-valued Dirichlet Processes
Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases - this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric m...
متن کاملA Scale-Based Approach to Finding Effective Dimensionality in Manifold Learning
The discovering of low-dimensional manifolds in high-dimensional data is one of the main goals in manifold learning. We propose a new approach to identify the effective dimension (intrinsic dimension) of low-dimensional manifolds. The scale space viewpoint is the key to our approach enabling us to meet the challenge of noisy data. Our approach finds the effective dimensionality of the data over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994